— Uvailability Digest

Virtual Transactions with NonStop AutoTMF
April 2007

In previous articles, we have discussed various ways to keep database copies in an active/active
application network synchronized. A frequently used method to accomplish this is data
replication.! Data replication engines require a log of database changes that they can use to
replicate changes from a source database to a target database. Transaction monitors generate
transaction logs that are ideal for this purpose.

Transactional applications benefit from many other advantages as well, including guaranteed
database consistency, higher performance, and the capability to recover lost or corrupted data.?

However, many older applications were written as nontransactional applications and cannot share
in these benefits. NonStop AutoTMF bridges this gap for applications written for HP NonStop
servers. It seamlessly converts nontransactional applications to transactional applications.

What is a Transaction?

Simply stated, a transaction is a group of operations that are so closely related that either all must
be performed or none must be performed. In data processing applications, we concern ourselves
with database and file operations since other functions such as printing or sending messages
cannot be revoked once they have been executed.

In an application program, the operations comprising a transaction are bounded by a begin
statement of some sort and an end statement. If the end statement is successfully reached, the
transaction is committed. That is, it is made permanently to disk and will not be lost even should
the system fail (short of a physical destruction of the storage device). If the end statement is not
reached due to some sort of error, the transaction is aborted; and the effects of all previous
operations within the transaction are reversed.’

Why Transactions?

Transactions ensure that the database is always consistent. This is because no partial set of
related operations are ever executed.

The database changes within the scope of a transaction do not really need to be physically
written to disk to ensure that they are durable. It is only necessary to record enough information
on disk so that the changes can be reconstructed, if necessary. This significantly improves
application performance.

! Asynchronous Replication Engines, Availability Digest; November, 2006.
Synchronous Replication, Availability Digest; December, 2006.
2 See our article in this issue entitled Transaction-Oriented Computing.

3 See the book review, Transaction Processing: Concepts and Techniques, in this issue of the Availability Digest.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

In many transaction management systems, such as HP’s NonStop TMF, change recording is
accomplished by maintaining a log of all changes (the audit trail in NonStop’s case). This
transaction log typically contains before and after images of each record whose changes have
been committed. It improves application performance because only the serial log has to be
written, not the individual random data changes which can be applied later.

The transaction log can be used to recover lost or corrupted transactions and ensures the
durability of the database.

Furthermore, the transaction log becomes the source of changes to be replicated to other
systems for disaster tolerance or active/active purposes.

Nontransactional Applications

If transaction-oriented computing provides so many benefits, why are there applications currently
in operation that are nontransactional? There are many reasons:

e Some applications were developed before the advent of transaction management
facilities.

e Some applications were developed after this time but before significant performance
problems were solved.*

e Some later applications were developed without transaction protection because of a
misunderstanding of transaction processing technology and benefits.

Suffice it to say, there is a large body of nontransactional applications, currently deployed in the
field, that could benefit if they could be made transactional.

NonStop AutoTMF

Moving nontransactional applications to transactional is the role of NonStop AutoTMF. AutoTMF
was developed by Carr Scott Software and is marketed and supported worldwide by HP as
NonStop AutoTMF.

AutoTMF watches all disk activity for selected programs so that it can automatically generate
transactions that group related disk activity. When AutoTMF detects the beginning of a business
transaction, it will insert a begin transaction command in the 1/O stream being sent to the
operating system. Later, when it detects that the transaction is complete, it will insert an end
transaction command to commit the transaction.

It will create transactions only for database operations on audited files. It ignores operations on
nonaudited files, passing these through directly to the operating system for execution.

Some applications are not candidates for AutoTMF. For instance, applications that bypass normal
operating system functions by running in privileged mode cannot be serviced by AutoTMF.

4 .)
In an early Stratus manual, users were warned about using transactions because of performance problems unless the
reasons to do so were compelling.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

Intercept Library

AutoTMF is implemented as an intercept library that is bound to the application program at
compile time. It comes in the form as a user library for non-Integrity systems and as a DLL for
Integrity systems. It makes no changes to the program source code and is therefore totally non-
invasive to the program.

The AutoTMF library intercepts all I/0
calls to the operating system so that it
can decide on transaction bound-

. . begin/end
aries. It passes on any I/O operations \ transaction
that are not pertinent, such as commands
operations on nonaudited files and >
communication calls. i - i
. AutoTME i/lo operations operating
| - >
_ application library system
It monitors the other 1/O calls to _iloerrors
maintain a transaction state for the

application. This state contains such
information as the number of open
files and the number of locked
records. It uses this state to help it
determine when to generate a begin
transaction or end transaction command. Once a transaction is started, all disk 1/O to audited files
is included within the scope of that transaction.

configu-
ration

AutoTMF will never abort one of its automatic transactions as this would undo an 1/O operation
that the application intended to execute. In addition, it intercepts all operations, including traps
and other exceptions that could terminate the process to ensure that all transactions are
committed.

Configuration

AutoTMF has numerous configuration parameters that can be set to control its behavior. It can be
configured to create automatic transactions for all files and programs or for just specified files or
programs. For instance, log files are usually not audited because if the application abended or the
system crashed any uncommitted log records would be backed out and lost. However, one can
configure AutoTMF to use a separate transaction for log files and to immediately commit log
writes.

The maximum number of updates prior to a commit can be specified as well as the maximum
amount of time since the last begin transaction command. Should either of these limits be
reached, AutoTMF will automatically commit the transaction. These parameters are especially
useful to add transaction capability to batch processing programs.

The level of isolation can be set. The impact of this parameter is described later under Options.
The level of isolation is used to refine events that will generate a commit of the transaction.

Starting a Transaction

If there is no current transaction in progress, AutoTMF will start a new transaction on any one of a
number of events that signals that database activity is about to begin. For instance, these include:

e Alock for afile or a record is requested (such as a read with lock).
e A write (insert), update, or delete command is executed.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

Committing a Transaction

The logic that evaluates I/O events to determine when an open automatic transaction is to be
committed is the heart of AutoTMF.® This logic is driven by the transaction state table as each
new I/O operation is analyzed. Events and states that will cause a transaction commit to be
generated include:

An unlock operation that releases the last lock being held is executed.

The last open file is closed.

The maximum update count has been reached.

The maximum time since the begin command has been reached.

The process replies to a message (presumably a reply to the request that was just
processed).

A read on $RECEIVE is issued (presumably looking for the next request).

e The process terminates.

AutoTMF extended to OSS applications

AutoTMF also now supports automatic TMF transaction protection for Open System Services
(OSS) programs developed in C, COBOL, and Java™ classes that use the JEnscribe
EnscribeFile class on HP Integrity NonStop servers.

Options
AutoTMF has several optional modes that can be invoked.
Separate Transactions

Normally, once a transaction has started, all changes to all audited files and tables are included in
the scope of that transaction.

However, AutoTMF can be instructed to create a separate transaction for each audited file or
table as a change is received for it. This is useful in some cases to eliminate lock contention in
programs that have complex lock behavior. Each transaction can be committed as soon as there
are no outstanding locks on the file or table involved in the transaction.

Isolation

AutoTMF supports three levels of transaction isolation for a process. These isolation levels are
intended to reduce the effect of AutoTMF on other processes with which the process is
interacting.

Weak — This is the default level of isolation and generates commits as described above.

Normal — A commit is generated if the process sends a message to another process.
This takes care of the case in which a requesting process, for instance, sends an
intermediate transaction to another server process. The new server may attempt to lock a
record already locked by the sending process, resulting in a deadlock. By committing the
transaction before it is sent, deadlocks of this nature are avoided.

° Carr, R. W., Schilling, B. E., Corbeil, J. C., Scott, H. P., Automatic Transaction Management, United States Patent
Application 20050102250; May 12, 2005.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

Strong — This isolation level is the same as normal isolation with the addition of a commit
being generated if a change is to be made to an unaudited file. This is required if there is
a chance that the unaudited update might be later undone by the application.

Audited File Creation

The configuration file can specify the names of files that, if created by a program, are to be
created as audited files.

Audit Attribute Concealment

In some cases, a program will ask for the attributes of a file. It is not expecting that one of the
attributes will be “audited” since it thinks that all of its files are unaudited.

AutoTMF will hide this attribute from the program when it returns the attributes given to it by the
operating system.

Bulk Transfers

Especially for batch programs, it is possible that the program will be writing blocks too large for
the transaction manager to handle. This option instructs AutoTMF to break large blocks into
smaller blocks that can be handled.

No-wait Commits

With no-wait commits, AutoTMF will return a commit complete indication to the program as soon
as the program issues the ENDTRANSACTION command without waiting for the transaction to
actually commit. This will improve the performance of the program. However, the next transaction
will not be started until the previous commit has completed.

I/O errors

Any I/O operation can generate an error. If the error is for an 1/O operation generated by the
program, that error is simply returned to the program. However, if the error occurred on a begin or
end transaction command issued by AutoTMF, AutoTMF will close the current automatic
transaction, if any, and will terminate the process.

Experience with AutoTMF

Though not confirmed by formal testing, Carr Scott estimates from field experience that AutoTMF
generates between one and two transactions for each real business transaction.

Many customers report significantly improved performance of their applications. After installing
AutoTMF, Barclay’'s Bank measured a throughput capability of 650 transactions per second on a
pair on le\lonStop 72014s. The peak load which they had been handling was 230 transactions per
second.

Some very large and popular third-party applications are for the most part nontransactional. A
good example is Base24 from ACI, used by financial institutions around the world. AutoTMF has
been successfully used to add transaction capability to applications such as Base24.” As a result,
performance is increased, and the applications database can be replicated to a remote site for

® Business Continuity Customer Experiences, 2002 ETUG panel presentation, www.itug.org.

! P. J. Nye, Using AutoTMF, TMF, and RDF to Enable Disaster Recovery for Base24 Systems, phil@cardlink.co.uk;
undated.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

disastger tolerance. Barclaycard Merchant Services is one such organization that has gone this
route.

NonStop AutoSYNC

Another requirement for managing an active/active application or a migration to a new system is
to be able to replicate nonaudited files. Carr Scott Software is also the developer of HP’s
NonStop AutoSYNC.

AutoSYNC will monitor a list of files supplied to it and will replicate them to a remote system
should they be changed. This is intended for files that are seldom updated, such as edit and
object files or static database files or tables that see little update activity since the source file
needs to be quiesced during the replication and since the target file is not available until the
replication is complete.

With AutoSYNC and an appropriate replication engine for maintaining synchronization of active
databases, all of the systems in an application network can be maintained in the same state.

Carr Scott Software

Founded by Dr. Richard Carr and Harry Scott in 1995, Carr Scott (www.carrscott.com) is a
privately held company which focuses on enabling software for HP NonStop servers. Located in
Duxbury, Massachusetts, and Cupertino, California, Carr Scott maintains strong technology
sharing agreements with HP. Their AutoTMF and AutoSYNC products are jointly marketed by
HP.

Other products of Carr Scott include Escort SQL, SQL database middleware for Enscribe
applications which allows NonStop Enscribe files to be transparently replaced with NonStop SQL
tables. Escort Ranger analyzes Enscribe files and NonStop SQL tables to determine the optimal
file partitioning ranges. Escort Journaling allows online database loading during an Enscribe to
SQL migration by capturing changes that occur during the online database load so that they can
be applied to the target file at the completion of the load.

Carr Scott products are used by over 300 NonStop customers worldwide.

8 http://www.carrscott.com/barclays.pdf.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

http://h71028.www7.hp.com/ERC/downloads/4AA0-0869ENW.pdf
http://www.carrscott.com/
http://www.carrscott.com/sql.shtml
http://www.carrscott.com/ranger.shtml
http://www.carrscott.com/journaling.shtml

	Virtual Transactions with NonStop AutoTMF
	What is a Transaction?
	Why Transactions?
	Nontransactional Applications
	NonStop AutoTMF
	Intercept Library
	Configuration
	Starting a Transaction
	Committing a Transaction

	Options
	Separate Transactions
	Isolation
	Audited File Creation
	Audit Attribute Concealment
	Bulk Transfers
	No-wait Commits

	I/O errors
	Experience with AutoTMF
	NonStop AutoSYNC
	Carr Scott Software

