
© 2006 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

1

Availability Digestthe

What is Active/Active?
October 2006

It is a fundamental fact that any system can and will fail at some point. The secret to achieving
extreme availabilities is to let it fail, but fix it fast. This is the premise behind active/active. If a
service outage is too short for users to notice, it will not be perceived as a service outage. In
effect, service availability has been maintained.

From a high-level perspective, active/active architectures accomplish fast recovery by distributing
the user base over multiple independent and geographically distributed processing nodes. Should
a node fail, the users of that node are switched to one or more surviving nodes in the application
network. This switchover can often be done in subseconds – taking no more time than the
resubmission of a failed transaction, an otherwise common occurrence.

1

Active/Active Architectures

An active/active system is a network of independent processing nodes, each having access to a
common replicated database such that all nodes can participate in a common application.

The application network comprises two or more processing nodes connected to a redundant
communications network. Any user can be connected to any node over this network. The nodes
all have access to two or more copies of the database. The database copies may be connected
directly to the network, or they may each be directly attached to one of the nodes.

1 Much more information concerning active/active architectures may be found in the book entitled Breaking the Availability
Barrier: Survivable Systems for Enterprise Computing, by Dr. Bill Highleyman, Paul J. Holenstein, and Dr. Bruce
Holenstein, published by AuthorHouse; 2004.

An Active/Active System with
Network-Attached Storage

redundant
network

server

data
base

server

data
base

server

data
base

replication

replication

users

users

users

users

An Active/Active System with
Direct-Attached Storage

redundant
network

server

server

server

replication

users

users

users

users

data
base

data
base



© 2006 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

2

The database copies are kept in synchronism by ensuring that any change to one copy is
immediately propagated to the other copies. There are many techniques for doing this, such as
network transactions or data replication. These techniques are described later in this article.

Should a node or its attached database fail, the users connected to that node have lost their
services. In this case, they are switched to another node or are distributed across multiple
surviving nodes to immediately restore service. Users at other nodes are unaffected. (See Do
You Know Where Your Train Is? for a description of one effective way to switch users.)

Providing that the nodes and database copies are geographically distributed, active/active
systems provide disaster tolerance. Should a disaster take out a node or a database site, there
are others in the network to take its place.

There are many ways to keep two or more database copies in synchronization. These include
network transactions, asynchronous data replication, and synchronous replication.

Whatever the technique, one result is mandatory. The database copies must always maintain
referential integrity so that each can be used actively by any application copy. Referential integrity
typically means that transactions initiated by a node be committed in the same order at any of the
database copies. In some cases, this requirement may extend to the updates within a transaction.
This is known as preserving the “natural flow” of all updates.

Network Transactions

Using network transactions, the scope of a transaction
includes all database copies. This results in each copy
of a data item across the network being locked before
any copy is updated. As a result, all database copies
are kept in exact synchronism.

One problem with network transactions is that each
lock request and each update must individually flow
across the network and a completion response
received. In widely dispersed systems, such a round
trip could take tens of milliseconds; and application
performance can be seriously affected. This is a clear
example of the compromise between availability and
performance.

Asynchronous Replication

An asynchronous replication engine
extracts changes made to its source
database from some sort of a
change queue (such as a change
log or an audit trail) and sends these
changes to a target database. This
replication is done “under the
covers” with respect to the
application, which is therefore
unaware of the replication activity.
Consequently, there is no per-
formance impact on the application.

application

Network Transaction

2. update

database database

1. start transaction
3. commit

2. update

application

change
queue

source
db

replication engine

Asynchronous Replication

target
db

1. update

2. send change

3. update
target

http://www.availabilitydigest.com/public_articles/0101/do_you_know_where_your_train_is.pdf
http://www.availabilitydigest.com/public_articles/0101/do_you_know_where_your_train_is.pdf


© 2006 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

3

However, there is a delay between the time that a change is applied to the source database and
the time that it is subsequently applied to the target database. This delay is known as replication
latency and typically ranges from hundreds of milliseconds to a few seconds. As a consequence,
should a node fail, there will likely be transactions that, having been applied to the source

database, are still in the replication pipeline at the
time of the failure. These transactions never make
it to the target database and, in effect, are lost.

Another issue with asynchronous replication is
data collisions. If a data item is updated on each of
two database copies within the replication latency
time, each will be replicated to the other database
copy and will overwrite the original update to that
copy. The two database copies are now different,
and both are wrong. There are several techniques
for avoiding data collisions or for detecting and
resolving them. These techniques will be
discussed in later articles.

Synchronous Replication

With synchronous replication, changes are
replicated to the target database via
asynchronous replication but are held
there and used only to lock the affected
data items. When the source node is
ready to commit the transaction, it checks
with all database copies to ensure that
they have been able to obtain locks on all
of the affected data items. It does this by
sending a query behind the last update
over the replication channel. If all
database copies are ready, the source
node instructs them to apply the updates
and to release their locks. Otherwise, all copies are instructed to abort the transaction.

2

Synchronous replication, like network transactions, guarantees that all database copies will be in
exact synchronism (as opposed to asynchronous replication, which keeps the database copies in
near-synchronism because of replication latency). Thus, no transactions are lost as the result of a
failure; and data collisions cannot occur.

In this case, the application is delayed as it waits for the commit to complete across the network.
This is called application latency. However, this delay compares to network transaction delays,
which must wait for each update as well as the commit to complete across the network. As a
consequence, synchronous replication is generally more efficient if database copies are widely
distributed or if transactions are large. Network transactions may be more efficient for collocated
database copies and short transactions.

2 See Holenstein, B. D., Holenstein, P. J., Strickler, G. E., Collision Avoidance in Bidirectional Database Replication,
United States Patent 6,662,196; December 9, 2003.

application

Data Collision

1. update

2. send changes

3. update
target

database

3. update
target

application

1. update

database
replication engine

replication engine

6. commit?

5. yes

application

change
queue

source
db

replication engine

Synchronous Replication

target
db

1. update
4. ready?

2. send change

3. update
target



© 2006 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

4

Other Advantages of Active/Active

There are many other advantages that an active/active architecture brings:

 Elimination of planned downtime: A node can be upgraded by simply switching its
users to other nodes. The node then can be brought down and its hardware, operating
system, database, or applications upgraded and tested. At this point, the node can be
returned to service by returning its users to it. This technique effectively eliminates
planned downtime.

 Data locality: As compared to an active/backup configuration in which the backup
system is not processing transactions, an active/active configuration can be distributed to
provide data locality. Users can be connected to their nearest respective node, thus
improving performance.

 Use of all purchased capacity: There is no idle backup system sitting around in an
active/active system. Therefore, in a multinode active/active architecture, less capacity
may need to be purchased. For instance, in a five-node configuration, if each node can
carry 25% of the load, full capacity is provided even in the event of a node failure.
However, only 125% of required capacity must be purchased rather than 200% for an
active/backup system.

 Online capacity expansion: Capacity easily can be added by installing a new node and
then switching some users to the new node.

 Load balancing: The load across the application network can be rebalanced by moving
users from a heavily loaded node to lightly loaded nodes.

 Risk-free failover testing: Failover testing can be risk-free and not require any user
downtime. In an active/backup system, it may take hours to fail over, during which time
the users are denied service. The same downtime impact occurs when users are
switched back to the primary node following failover testing. Furthermore, what if the
backup node turns out to be nonoperational? In an active/active system, it is known that
the other nodes are working; and failover takes seconds at most.

 Lights-out operation: In a multinode active/active application network, it may not be
necessary to have every site staffed since should a node fail, the system continues
operating anyway. Time to recover the failed node is less time-critical, especially if
service can still be provided even after a second node failure.

RPO and RTO

When deciding upon which active/active architecture to use, one has to consider two important
corporate goals, RPO and RTO.

 RPO is the recovery point objective. It specifies the amount of data that can be lost in the
event of a failure. Tape backups can lose hours of data (as well as having hours of
recovery time). Asynchronous replication can lose seconds of data, depending upon how
fast the replication engine is (some have replication latencies measured in subsecond
times). Synchronous replication and network transactions provide a zero RPO.

 RTO is the recovery time objective. It states the tolerance of the operation to an outage.
Some applications can be down for minutes or hours without disastrous consequences.



© 2006 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

5

For other applications, downtime of minutes or even seconds can be unacceptable. The
primary advantage of active/active systems is that they provide essentially a zero RTO.

Active/Active Issues

There are several important active/active system issues that must be understood and resolved.

 How will user switching be handled? Can it be done automatically?

 Is there a chance of data collisions? If so, how will they be handled?

 Are lost transactions acceptable following a node failure? To what extent? Can they be
recovered?

 Can the applications be run in an active/active environment? Do they require
modification?

 What performance impact can be tolerated when implementing an active/active
architecture?

 What additional cost can be tolerated? This may include hardware, software licenses,
networking, people, and sites.

In Summary

There is always a fundamental compromise between availability, cost, and performance.
Active/active technology can be tailored to a particular application to optimize this compromise.


