the . P .
— vailability Digest

www.availabilitydigest.com

The 25 Most Exploitable Programming Errors
February 2013

The Department of Homeland Security (DHS) Office of Cybersecurity and
Communications publishes a detailed list of the twenty-five most egregious
programming errors that lead to exploitable security vulnerabilities that have made
software so vulnerable to hackers and cybercriminals. International in scope and free
for public use, the Common Weakness Enumeration (CWE) (https://buildsecurityin.us-
cert.gov/swal/cwe/) is a community-developed dictionary of software weaknesses. The
top twenty-five CWESs represent the most significant exploitable software constructs in
this dictionary

The CWE provides descriptions of the most common and serious exploitable software constructs. They
are often easy to find and to exploit by cybercriminals. They are dangerous because they will frequently
allow attackers to completely take over the system, steal data, or prevent the system from working at all.
Consequently, the CWE can aid in the education and training of programmers on how to eliminate all-too-
common errors that can be compromised by malware.

The CWE is the result of collaboration between the SANS Institute, MITRE, and many top software
security experts in the US and Europe. MITRE maintains the CWE web site with the support of the U.S.
Department of Homeland Security's National Cyber Security Division. The web site provides detailed
descriptions of these errors along with authoritative guidance for mitigating and avoiding them.
Furthermore, the CWE web site contains data on more than 800 programming errors, design errors, and
architecture errors that can lead to exploitable vulnerabilities.

The CWE top twenty-five vulnerabilities are updated each year. The hundreds of vulnerabilities listed on
the CWE web site are prioritized using inputs from over twenty organizations. Prioritization is based on
prevalence, importance, and likelihood of exploit using the Common Weakness Scoring System, CWSS
(http://cwe.mitre.org/cwss/).

The Top Twenty-Five Vulnerabilities

The most recent top twenty-five vulnerabilities listed on the CWE web site include the following in order of
their seriousness:

Rank Vulnerability
1 Improper Neutralization of Special Elements used in an SQL Command (‘'SQL Injection’)
2 Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection’)

3 Buffer Copy without Checking Size of Input (‘'Classic Buffer Overflow")
4 Improper Neutralization of Input During Web Page Generation ('Cross-Site Scripting’)
5 Missing Authentication for Critical Function

© 2013 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

http://www.availabilitydigest.com/
https://buildsecurityin.us-cert.gov/swa/cwe/
https://buildsecurityin.us-cert.gov/swa/cwe/
http://cwe.mitre.org/cwss/

6 Missing Authorization

7 Use of Hard-coded Credentials

8 Missing Encryption of Sensitive Data

9 Unrestricted Upload of File with Dangerous Type

10 Reliance on Untrusted Inputs in a Security Decision

11 Execution with Unnecessary Privileges

12 Cross-Site Request Forgery (CSRF)

13 Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')
14 Download of Code Without Integrity Check

15 Incorrect Authorization

16 Inclusion of Functionality from Untrusted Control Sphere
17 Incorrect Permission Assignment for Critical Resource

18 Use of Potentially Dangerous Function

19 Use of a Broken or Risky Cryptographic Algorithm

20 Incorrect Calculation of Buffer Size

21 Improper Restriction of Excessive Authentication Attempts
22 URL Redirection to Untrusted Site (‘'Open Redirect’)

23 Uncontrolled Format String

24 Integer Overflow or Wraparound

25 Use of a One-Way Hash without a Salt

Types of Vulnerabilities

The top twenty-five vulnerabilities are further characterized into categories that describe the general form
of the vulnerability that they pose:

Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is sent and received between separate
components, modules, programs, processes, threads, or systems.

Rank Vulnerability
1 Improper Neutralization of Special Elements used in an SQL Command (‘'SQL Injection’)
2 Improper Neutralization of Special Elements used in an OS Command ('OS Command
Injection’)

4 Improper Neutralization of Input During Web Page Generation ('Cross-Site Scripting’)
9 Unrestricted Upload of File with Dangerous Type

12 Cross-Site Request Forgery (CSRF)

22 URL Redirection to Untrusted Site (‘Open Redirect’)

Risky Resource Management

The weaknesses in this category are related to ways in which software does not properly manage the
creation, usage, transfer, or destruction of important system resources.

Rank Vulnerability
3 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow")
13 Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal’)
14 Download of Code Without Integrity Check
16 Inclusion of Functionality from Untrusted Control Sphere
18 Use of Potentially Dangerous Function
20 Incorrect Calculation of Buffer Size
23 Uncontrolled Format String
24 Integer Overflow or Wraparound

© 2013 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

Porous Defenses

The weaknesses in this category are related to defensive techniques that are often misused, abused, or
just plain ignored.

Rank Vulnerability
5 Missing Authentication for Critical Function
6 Missing Authorization
7 Use of Hard-coded Credentials
8 Missing Encryption of Sensitive Data
10 Reliance on Untrusted Inputs in a Security Decision
11 Execution with Unnecessary Privileges
15 Incorrect Authorization
17 Incorrect Permission Assignment for Critical Resource
19 Use of a Broken or Risky Cryptographic Algorithm
21 Improper Restriction of Excessive Authentication Attempts
25 Use of a One-Way Hash without a Salt

Detailed Vulnerability Description
For each vulnerability, a great deal of information is given.
Summary

An overall evaluation of the seriousness of the vulnerability is given. For instance, SQL Injection (Rank 1)
is evaluated as follows:

Weakness Prevalence: High

Remediation Cost: Low

Attack Frequency: Often

Conseqguences: Security bypass, data loss
Ease of Detection: Easy

Attacker Awareness: High

Discussion

A general description is given of the effects of the vulnerability. For instance, for SQL Injection, the CWS
points out that if attackers can influence the SQL statements that you use to access your database, they
have access to all of your data. If you use SQL queries in security controls such as authentication,
attackers can alter the logic of these queries to bypass security. SQL injection was responsible for the
high-profile compromises of companies such as Sony, PBS, and MySQL.com.

Technical Details

The CWE goes into depth in its explanation of the vulnerability. The explanation includes a detailed
technical description, the points in the project life cycle where the vulnerability might be introduced, and
its common consequences.

Coding Examples

Extensive coding examples showing improper coding techniques that can be exploited by an attacker are
provided. An illuminating example is given for SQL Injection. This example is copied directly from the
CWE. Consider the following SQL statement:

© 2013 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

string query = "SELECT * FROM items WHERE owner =™ + userName + "™ AND itemname =" +
[temName.Text + ™",

The query that this code intends to execute is:

SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;

However, because the query is constructed dynamically by concatenating a constant base query
string and a user input string, the query only behaves correctly if temName does not contain a single-
guote character. If an attacker with the user name wiley enters the string:

name’' OR 'a'='a

for itemName, then the query becomes the following:

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a’;

The addition of the:

OR 'a'='a’

condition causes the WHERE clause to always evaluate to true, so the query becomes logically
equivalent to the much simpler query:

SELECT * FROM items;
This simplification of the query allows the attacker to bypass the requirement that the query only
return items owned by the authenticated user. The query now returns all entries stored in the items

table, regardless of their specified owner.

This is just one example of the multitude of coding examples for the top twenty-five vulnerabilities found in
the CWE.

Detection Methods

Various methods for detecting the vulnerability are presented, including the effectiveness of automatic
static analysis, automatic dynamic analysis, and manual analysis.

Prevention and Mitigation

Several suggestions are offered for preventing or mitigating the vulnerability. They include procedures to
follow in the architectural, design, implementation, deployment, and operational phases of the project.

Summary
The CWE is another example of the Department of Homeland Security’s fight against cybercrime. Last

December, 2012, it issued a warning to disable Java 7 because of vulnerabilities that Oracle has yet been
unable to correct.”

The detailed descriptions for the “CWE Top 25 Most Dangerous Software Errors” can be found at
http://cwe.mitre.org/top25/#CWE-89.

! Department of Homeland Security Says, “Disable Java”, Availability Digest; January 2013.
http://www.availabilitydigest.com/public_articles/0801/disable-java.pdf

© 2013 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

http://cwe.mitre.org/top25/#CWE-89

A handy Pocket Guide (30 pages) summarizing the top twenty-five vulnerabilities, entitled “Key Practices
for Mitigating the Most Egregious Exploitable Software Weaknesses,” may be found at
https://buildsecurityin.us-cert.gov/swa/downloads/KeyPracticesMWV13 02AM091111.pdf.

© 2013 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

https://buildsecurityin.us-cert.gov/swa/downloads/KeyPracticesMWV13_02AM091111.pdf

