the . P .
— vailability Digest

www.availabilitydigest.com

SchoonerSQL Brings Five 9s to MySQL
January 2012

MySQL is one of the most popular relational databases in use today. It is now owned by Oracle
Corporation and is available as open source as well as several proprietary offerings with full support.

Schooner Information Technology, Inc. (http://www.schoonerinfotech.com), has made significant
extensions to MySQL to improve its availability and replication performance. The goal of the resulting
product, SchoonerSQL™, is to achieve five 9s availability, or about five minutes of downtime per year on
the average.

SchoonerSQL

SchoonerSQL is a highly available, high performance, transactional, crash-safe MySQL database. The
SchoonerSQL enhancements are implemented as extensions to MySQL'’s underlying storage engine,
InnoDB. Schooner has an agreement with Oracle that entitles it to use MySQL and InnoDB source code
with distribution rights for the full build of MySQL. SchoonerSQL is certified by Oracle as being fully
compatible with MySQL Enterprise and InnoDB. No schema or application changes are required.

The predominant elements of SchoonerSQL'’s availability and performance enhancements include:

e MySQL clusters comprising a master node and up to seven slave nodes that are kept in exact
synchronism with the master node via synchronous replication.

e Scaling by adding additional clusters synchronized with the primary cluster via asynchronous
replication.

e Highly parallelized synchronous replication within a cluster across LANs and MANS.

e Highly parallelized asynchronous replication between clusters across LANs, MANs, and WANSs.

e Automated failover within seconds over LANs, MANs, and WANS.

Transaction-based synchronous replication within a cluster guarantees that all nodes in the cluster have
the identical consistent view of the contents of the database. Querying any one of the cluster nodes will
have the same result. There is no stale data delivered. If the master node should fail, there is no data loss
following recovery to a slave node.

SchoonerSQL provides a centralized GUI-based cluster administration manager that provides point-and-
click capabilities for cluster management, monitoring, tuning, and trouble shooting. Email alerts can be
configured for critical events such as a downed node or a failover.

SchoonerSQL can use hard drives, SAN, or flash memory as its storage medium. It will run on any of the
popular x86 servers running Linux or CentOS.

© 2012 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

http://www.availabilitydigest.com/
http://www.schoonerinfotech.com/

SchoonerSQL’s high availability goal is achieved via fast failover to one of multiple surviving nodes within
a cluster. SchoonerSQL's performance advantages are achieved via its implementation of highly
parallelized replication threads supporting multicore processor environments. Using flash memory instead
of hard drives can increase database performance by an order of magnitude.

SchoonerSQL Clusters
Cluster Architecture

A SchoonerSQL cluster is the fundamental structure in a SchoonerSQL environment. A SchoonerSQL
cluster can contain up to eight nodes, as shown in Figure 1. Each node contains one or more instances
of a MySQL database.

One node in the cluster is the Master node. All updates
updates to the MySQL database are routed to
the Master node. The Master node is assigned

a virtual IP address (VIP), and applications vipt

route all write/update/delete commands to that

vIP (leo n Flgure 1)' synchronous replication

The other nodes in the cluster (up to seven) l l

are slave rjodes. The _slave r_10de databases | Read Master Read Master . | Read Master
are kept in synchronism with the Master Node 1 Node 2 Node 7
database via synchronous replication, as - - -

X ! 2 vip3 vip4 i ip6 | vi
described later. Schooner calls these Read lv'p l l VIPS | VIPS | VIPT !
Master nodes since their database contents

\ /
are always an exact copy of the Master ~
database. reads
. . A SchoonerSQL Cluster
Each Read Master node is assigned one or Figure 1

more VIP’s to which applications can connect

in order to read the contents of the database (vip2 through vip7 in Figure 1). The Master node can also
support one or more read VIPs (vipl in Figure 1). Multiple VIPs per node provide the basis for easy load
balancing by simply moving the ownership of a VIP from one node to another.

The nodes can be interconnected either via a LAN or a MAN (metropolitan area network using fiber optic
connections). To ensure performance, the replication network should be separate from the client network
so as not to load down replication capacity with client traffic. To ensure availability, normal redundancy of
network links, network switches, power feeds, and other single points of failure should be incorporated.

Zero Downtime Upgrades

Nodes in a SchoonerSQL cluster can be upgraded without taking the cluster down. To upgrade a node,
its load is moved to another node by reassigning its VIPs. The node upgrade is made, and the node is
then returned to service after resynchronizing its database.

Online Backups and Restores

SchoonerSQL provides online backups and restores. A full or incremental backup can be taken of the
database without impacting current update activity. The backup is a consistent copy of the database since
it only includes committed transactions.

A nodal database can be restored following a recovery, an upgrade, or the addition of a new node to the
cluster without affecting normal operation.

© 2012 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

Synchronous Replication

The power of a SchoonerSQL cluster lies in the updates
synchronous replication that it uses to keep its

nodes synchronized. As shown in Figure 2, ; gggfr‘:ﬁf
replication is on a transaction basis. However, a ———— > | Read Master
two-phase commit protocol is not necessary. D Node

3. acknowledge

The Master node processes a transaction 4. commit 4. commit
normally until commit time. As it makes each
update in the transaction, it sends that update to
the Read Master over the replication channel (1).
However, prior to committing the transaction, the
Master sends a commit directive to the Read SchoonerSQL Synchronous Replication
Master (2). The Read Master responds with an Figure 2

acknowledgement to the Master that it has safe-stored the transaction (3). At this point, the transaction

can be committed by both the Master and the Read Master (4).
Checksums on replication messages are used to guard against data corruption.

If there are multiple Read Master nodes in a cluster, they are all kept in synchronism with the Master via
synchronous replication. SchoonerSQL’s synchronous replication engine is multithreaded to take
advantage of multicore processors so that multiple Read Masters can be synchronized simultaneously,
thus minimizing the amount of time that the Master has to wait for the Read Master acknowledgements.

If a Read Master cannot positively acknowledge the commit directive from its Master, the Read Master is
removed from the cluster; and an attempt is made to resynchronize its database. If resynchronization is
successful, the Read Master rejoins the cluster.

The result of the synchronous replication sequence is that the Read Master databases are always in
exact synchronism with the Master’s database. This process has several benefits:

e There is read consistency across all nodes since every node is updated simultaneously and all
nodes have the same copy of the database.

e No stale data is ever delivered to an application since there is no lag in a Read Master getting
data updates.

e No data is lost following a Master node failure since each Read Master has a complete up-to-date
copy of the database.

e The Read Masters can keep up with the Master node so that the Master node does not have to
be throttled to allow slower slaves to keep up.

Failover and Recovery

Should a node fail in a cluster, SchoonerSQL provides rapid and automated recovery. Recovery typically
can be effected in just a few seconds. Key to fast recovery is the use of virtual IP addresses, as described
below.

Recovering from a Master Node Failure

Should the Master node fail, any Read Master can be promoted to Master since it has a complete and
consistent copy of the database. All that is required is that one Read Master be chosen to be the new
Master and the Master update VIP assigned to it. Thereafter, all new database modification commands
will be sent to the new Master.

© 2012 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

An additional task is to rebalance the cluster so that read activity is evenly spread among the surviving
nodes. This is done by reassigning the read VIPs to Read Masters so that each handles its fair share of
the read load.

This process is shown in Figure 3, using the cluster of Figure 1 as an example. Should the Master node
fail, the Read Master 2 is promoted to Master by assigning the update VIP, vip0, to it. To balance its load,
its vip3 address is moved to Node 2, which is

also assigned the read VIP vipl originally updates

serviced by the Master node. All this is done

within a few seconds. The cluster resumes | | “WMastee |
operation with Read Master 1 playing the role of

the Master node and the read activity eynchronous replication

redistributed among the surviving nodes. vip0 [l

Read Master

When the original Master node is recovered, its [NewMaster] [Read Master
Node 7

database is resynchronized with one of the Read e Wz

€« ——— — - — - — —

Master databases; and the VIPs are reassigned lvipZ lvip1 lvipslvip:i Vip5 | vip6 | vip?
to restore the cluster to its original configuration.

If the Master database is still intact, only the \ /
transactions that were committed following its r;gs

failure need be applied to resynchronize it,

therefore speeding recovery. Master Node Failure

Figure 3

Recovering from a Read Master Node Failure

The recovery from a Read Master failure is similar, except that a new Master does not have to be
configured. The read VIPs that the failed Read Master had been servicing are simply reassigned to
surviving nodes.

Upon recovery of the failed Read Master, its database is incrementally reconstructed, and it is returned to
service by reassigning its read VIPs to it.

Scaling with Asynchronous Clusters

SchoonerSQL can be scaled beyond the capacity of a single cluster by configuring additional slave
clusters that are kept synchronized with the master cluster via asynchronous replication, as shown in
Figure 4. These additional slave clusters
can be contained within the same data
center as the master cluster and connected (~ N (" N

. . asynchronous
to it via a LAN or MAN, or they may be Master
contained in distant data centers and Node

replication Async
! Slave/Master
connected via a WAN.

sync
repl
A 4

writes

sync
repl
v

By configuring multiple clusters, unlimited
read and write scaling is possible. Read
scaling is achieved by the additional Read
Masters in the multiple slave clusters. Each
cluster may also act as a master cluster

Read Master
Node

Read Master
Node

processing its own database updates and 3:2:’;"&?5?; 2‘;:::3‘:‘::2';
replicating them to the other clusters so _ J - J
long as each cluster manages a different

database or database partition (data Multi-Cluster Sch;g:‘r’;sf'- Configuration

collisions are not detected or resolved). In
this way, write scaling may be achieved.

© 2012 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

Asynchronous Replication

Synchronous replication is not practical between clusters that are separated by large distances because
the communication latency, which can range from tens to hundreds of milliseconds per message, would
slow down the application seriously as it awaited responses from distant clusters. Therefore,
asynchronous replication is used for inter-cluster synchronization.

With asynchronous replication, the master cluster is unaware that its data is being replicated. Rather, the
remote slave cluster reads changes from the master cluster’s transaction log after the fact and applies
them to the nodes within the slave cluster. As shown in Figure 4, the Master node in the slave cluster is
also a slave node to the Master cluster. Therefore, it is called an Asynchronous Slave/Master. It reads the
changes from the master cluster’s transaction log asynchronously as a slave and applies them to its local
Read Master nodes synchronously as a Master node.

As with its synchronous replication engine, SchoonerSQL’s asynchronous replication is multithreaded so
that it can take advantage of multicore processors to replicate to multiple remote clusters simultaneously.
In addition, the Asynchronous Slave/Master node incorporates multithreaded appliers to apply data
changes rapidly to its database while ensuring database consistency.

SchoonerSQL’s asynchronous replication trades some of the benefits of synchronous replication for
scalability. There is a lag, known as replication latency, between the time that an update is made to the
master cluster’s database and the time that the update appears in the database of the slave cluster.
Thus, reads on Read Masters in the slave cluster may on occasion be somewhat stale. However, the
parallelized architecture of the SchoonerSQL replication engine limits this delay to typically a fraction of a
second.

Likewise, some data may be lost should the master cluster fail (an unlikely event since there may be
several slave nodes to which to fail over). Whatever data is in the replication pipeline that has not yet
made it to the slave cluster (again, typically less than a second’s worth of data) will be lost. This data may
be retrievable when the master cluster is returned to service.

SchoonerSQL’s asynchronous replication engine can interoperate in a mixed environment with traditional
MySQL asynchronous and semisynchronous masters and slaves.

Recovering from a Master Node Failure

Should the Master node in the master cluster fail, asynchronous replication will be lost. When a new
Master is configured in the master cluster, the slave cluster's Asynchronous Slave/Master node will
reconnect with the transaction log of the new Master in the master cluster, and asynchronous replication
is restored with no data loss.

Recovering from an Asynchronous Master/Slave Node Failure

Should the Asynchronous Master/Slave node in a slave cluster fail, one of the Read Masters in the slave
cluster will be promoted just as in the master cluster. The new Asynchronous Master/Slave will connect
with the Master transaction log in the Master cluster and asynchronous replication proceeds without data
loss.

Recovering from an Asynchronous Replication Channel Failure

The reliability of the asynchronous replication channel is paramount to prevent split-brain operation. If
asynchronous replication is lost, the slave cluster cannot receive updates and its database will fall behind
that of the master cluster. Therefore, it is recommended that the channels used for asynchronous
replication be redundant.

© 2012 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

Should the asynchronous replication channel fail, the slave cluster continues to provide read services
even though some of the data may be stale. When the channel is returned to service, the slave cluster
database will be resynchronized with the master cluster database; and normal operation is resumed.

Administration

SchoonerSQL provides an Administration Console with a simple point-and-click GUI interface for cluster,
node, and database monitoring and management. Its functions include:

Online provisioning of servers and MySQL instances.

Create synchronous and asynchronous clusters.

Assign and remove MySQL instances from nodes.

Assign VIPs to Masters, Read Masters, and async masters and slaves.
Database migration from one node to another within a cluster.

Online upgrades.

Automated failover and fallback.

Online full and incremental backup and restore.

Monitoring and optimization statistics for physical and logical components.

SchoonerSQL also supports configurable email alerts for critical events such as:

Instance creation and deletion.
Instance up or down.

Instance attached or detached.
Cluster created or removed.
Change in VIP assignment.
Synchronous failover.
Asynchronous failover.
Split-brain operation.

Performance

Benchmarks run by Schooner® show significant performance improvement over distributed configurations
using MySQL. The benchmarks are based upon a 1,000 warehouse configuration with 32 connections.

These benchmarks show a 3x performance advantage over MySQL asynchronous replication and a 2x
performance advantage over MySQL semisynchronous replication when using hard disk drives. For flash
memory, SchoonerSQL shows a 5x performance advantage over MySQL asynchronous replication and a
4x performance advantage over MySQL semisynchronous replication.

Within SchoonerSQL, an order of magnitude improvement in performance is achievable by moving from
hard disk drives to flash memory.

Supported Platforms

SchoonerSQL can run on Dell, HP, and IBM Intel (not AMD) two-, four- and eight-core x86 servers
running Red Hat Linux or CentOS. Servers should have at least 64 GB of memory.

SchoonerSQL can use hard disk drives, SAN, or flash memory for data storage. It supports the use of
multiple flash drives in parallel.

! The Short Guide to MySQL High-Availability Options, Schooner White Paper.
http://www.schoonerinfotech.com/whitepapers/Short Guide to MySQL HA_ Options.pdf

© 2012 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

SchoonerSQL is not compatible with virtual machine environments.
Licensing

SchoonerSQL is licensed as of this writing at $9,500 per year per server in the U.S. Multiyear discounts
are available, as are site, project, and enterprise licenses.

Schooner Membrain

Schooner Membrain is a flash-optimized implementation of the widely used memcached software cache
facility. Memcached is a general purpose distributed caching system used to speed up database-driven
web sites and other applications.

Schooner Membrain is used as a transient cache and a persistent data store for NoSQL (Not Only SQL).
Its highly-concurrent multicore implementation of memcached is extended to provide true persistence.

Membrain can manage up to 512 GB of flash memory.
Summary

SchoonerSQL provides significant availability and performance advantages over standard MySQL
implementations. Certified by Oracle as being fully compatible with MySQL Enterprise and InnoDB, it can
be used without modification by any MySQL Enterprise application.

Its performance improvement is achieved by highly parallelized multithreaded replication threads for use
with multicore processors. Benchmarks have shown a performance improvement over MySQL
configurations of two to five times.

Its high availability is achieved through the use of synchronously replicated multinode clusters that
provide fast failover (within seconds) of a node failure. A SchoonerSQL cluster is scalable by configuring
it with up to eight nodes. Additional read and write scalability is provided by adding additional clusters
synchronized via asynchronous replication. A multicluster environment can be distributed over unlimited
geographical distances to provide full disaster tolerance.

© 2012 Sombers Associates, Inc., and W. H. Highleyman

www.availabilitydigest.com
For discussion, contact editor@availabilitydigest.com

