
© 2011 Sombe

For discussio

Availability Digestthe

www.availabilitydigest.com

Choosing a Business Continuity Solution
Part 2 – Data Replication

August 2011

In Part 1 of this series, we reviewed various concepts of availability. We pointed out that systems
can be highly available, exhibiting minutes of downtime per outage, or continuously available with
seconds of downtime per outage. If a backup data center exists to continue operations following a
disaster of some sort, the backup data center can provide disaster recovery or disaster tolerance.
With disaster recovery, IT services can be restored, though it may take days or weeks. With
disaster tolerance, IT services continue uninterrupted following a disaster.

Fundamental to all highly available and continuously available architectures is data replication.
Such availability requires redundancy. It is data replication that maintains redundant databases in
synchronization so that an up-to-date database copy is immediately available following an
outage. Part 2 of this series

1
explores the various replication technologies and their strengths and

weaknesses.

Data Replication - The Fundamental Force Behind Availability

Improving your availability via data replication depends upon having at least two nodes, each
being capable of hosting a database. Typically, each node also can host the application that is
being protected.

2

1 This series of articles is a reprint of a Gravic
2 There are replication architectures in which t
event of a primary-system failure, the data
Depending upon the architecture used, these
long recovery times (many hours to days). In
data loss but that have very fast recovery time
rs Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com
n, contact editor@availabilitydigest.com

1

, Inc., white paper and is published with the permission of Gravic.
he target node is a “data bunker” whose purpose is to safe-store data. In the
bunker is used to bring the database of the backup system up-to-date.
approaches can offer little to no data loss. However, they typically have very
this paper, we will focus on replication architectures that provide low to no
s.

Figure 1: Data Replication

http://www.availabilitydigest.com/

© 2011 Somb

For discuss

As shown in Figure 1, the purpose of data replication is to keep a target database in synchronism
with a source database that is being updated by a source application.

We talk about the source database hosted by the source node and the target database hosted by
the target node. The two nodes comprise the distributed data-processing system. As an
application makes changes (inserts, updates, and deletes) to its local database (the source
database), those changes are sent immediately over a communication channel to the target
system, where they are applied to the target database (Figure 2). The target database typically
resides on another independent node that may be hundreds or thousands of miles away. We call
the facility that gathers changes made to the source database and applies them to the remote
target database a replication engine.

Data-Replication Technique

Data-replication engines can be cat

 Hardware versus Software
is implemented via low-le
software-based replication
usually the case in the syst

 Asynchronous versus Sync
database changes to the
Changes are sent after-the
The application and the da
change queue.

Synchronous replication al
database copies simultane
coupled to each other. As w
either tightly coupled or loo

 Unidirectional versus Bidire
are sent in just one dire
bidirectional replication, bo

3 Breaking the Availability Barrier: Survivable
Breaking the Availability Barrier II: Achieving
Breaking the Availability Barrier III: Active/Ac
ers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

ion, contact editor@availabilitydigest.com

2

s – An Overview

egorized in several ways:
3

Replication – With hardware replication, the replication engine
vel device drivers, typically in the storage subsystem. A
engine can reside either in the storage subsystem or, as is

ems we will discuss, in the processing nodes themselves.

hronous Replication – Asynchronous replication sends source
target database without impacting the source application.

-fact from a queue of changes maintained on the source node.
ta-replication engine are decoupled from each other via the

lows no changes to be made unless they can be made to all
ously. The application and the data-replication facilities are
e shall see, depending upon the approach used, they may be

sely coupled.

ctional Replication – With unidirectional replication, changes
ction from a source database to a target database. With
th databases can be active; and changes made to either are

Systems for Enterprise Computing, AuthorHouse; 2004.
Century Uptimes with Active/Active Systems, AuthorHouse; 2007.
tive Systems in Practice, AuthorHouse; 2007.

Figure 2: Data-Replication Engine

© 2011 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

3

replicated to the other. In this case, each database is both a source and a target.
4

In
either case, replication can be either asynchronous or synchronous.

Hardware Versus Software Replication

Hardware Replication

Replicate on Cache Flush

Hardware replication is usually implemented in the storage-system controller. It replicates disk
blocks as they are written to the source disk, thus guaranteeing that the contents of the target
disk are always identical to the source disk.

However, disk blocks are typically only written to disk when they are flushed from the disk’s
cache. There is no logical order to the disk-write sequence since other factors control cache
flushing - disk blocks that are the least recently used are flushed to disk when cache space is
needed for new blocks that must be read from disk. As a consequence, the target disk is not
guaranteed to be consistent. Target disk blocks may be partially split. Indices may exist without
the rows or records to which they refer. Children may exist without parents. The data is consistent
in cache, but the target-disk image is generally useless. As a result, applications cannot use the
target database for any application processing. Should the source node fail, a lengthy recovery
process is required to bring the target database into a useful, consistent state.

Additionally, because of the cache-flushing issue, large amounts of data may be lost due to a
source-system failure even if synchronous replication is used, as any data still in cache will not
have been flushed at the time of failure.

Replicate on Cache Update

Some storage controllers replicate changes as they are made to cache regardless of whether
they have been physically written to the source disk or not. The replication of cache updates can
ensure the logical consistency of the target database since changes are replicated to the target
system as soon as they are made at the source system. Therefore, the target database can
provide a consistent view of the source database.

Hardware replication, whether based on disk flushing or cache updating, typically sends blocks of
changes to the target. In some cases, the controller can compress data to only those bytes that
have changed. Hardware replication is limited to specific hardware and may not be possible in
your configuration.

The two replication techniques described above generally require the identical storage technology
down to the version to be used at both the source and the target. They also do not typically allow
the target database to be opened by applications at the same time that replication is taking place,
thus preventing their use in active/active systems. Therefore, hardware replication is not an
option if recovery times measured in seconds or minutes is to be achieved. As a consequence,
hardware replication will be discussed no further in this paper.

4 Bidirectional replication may cause problems with certain applications that are not designed to be distributed. In this
case, an alternative architecture that can be used is a “sizzling-hot standby.” Bidirectional replication is configured with
applications running on both systems. However, all transactions are sent only to one system, while the other system acts
as a hot standby. Should the primary system fail, all that needs to be done is to reroute transaction activity to the standby
system. Since it is already configured for replication, the failed system can be easily restored to operation once it is
repaired.

© 2011 Sombers Associates
www.availabi

For discussion, contact ed

Software Replication

In the high-availability systems that we will consider, higher-level software carries out the
replication task. A data-replication engine running on the source and target systems performs the
replication. Only in this way can the continuously available active/active systems that we will
describe later be implemented.

Software-replication engines typically read changes from a change queue of some sort and send
them to the target system to update its database. So long as updates are made to the target
system in the same order as they were made at the source system, the target database will be
consistent and usable by other applications. Some high-performance replication engines are
multithreaded to improve replication throughput. In these engines, resynchronizing facilities
reorder updates that may be received out-of-order from the various threads before the updates
are applied to the target database.

Software replication may be by event, by transaction, or by request. Event replication replicates
DML (data manipulation language) events as they occur. DML events include insert, update, and
delete operations. Event replication in some cases may also replicate DDL (data definition
language) operations that affect the database’s data structure and schema.

Transaction replication replicates entire transactions, either one operation at a time as they occur
or as a group of operations once the transaction has committed on the source. When replayed at
the target, the transaction is either committed or, if the entire transaction is not received, is
aborted.

Request replication replicates the entire request, which is reprocessed in its entirety by the target
system.

Asynchronous versus Synchronous Replication

Asynchronous Replication

An asynchronous data-replication
engine is completely transparent to
the applications running in the
source node. As shown in Figure 3,
it extracts changes made to the
source database from a change
queue and sends them after-the-fact
to the target database. The
replication engine makes changes to
the target-database copy somewhat
later than they were made to the
source database. The result is that
the databases are synchronized, but
the target database copy lags the
source database by a short interval. This inter
replication engine.

The replication latency associated with an asy
must be considered when using such technolo
source node. Any changes that were in the r
target node may be lost. The data loss in thi
engine, which is typically measured in the tens

changes

asynchronous
replication engine

target
data
base

target system

Application

changes

source
data
base

source system

change
queue
, Inc., and W. H. Highleyman
litydigest.com
itor@availabilitydigest.com

4

val is known as the replication latency of the data-

nchronous replication engine creates an issue that
gy. This issue is data loss following a failure of the
eplication pipeline and that did not make it to the
s case is the replication latency of the replication
or hundreds of milliseconds.

Figure 3: Asynchronous Replication Engine

© 2011 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

Synchronous Replication

A synchronous data-replication engine solves the asynchronous-replication problem of data loss
following a node failure. Synchronous replication makes no permanent changes to any database
copy unless those changes can be applied to all database copies. Therefore, should a node or
the network fail, no data is lost. Synchronous replication can satisfy RPOs (Recovery Point
Objectives) of zero (that is, no data loss).

Synchronous replication has its own issue, and that is application latency. Since the application
must wait for the transaction’s data to be safe-stored and optionally applied to all database copies
in the application network, the source application’s transaction completion is delayed.

There are two primary synchronous-replication methods that we will describe – dual writes and
coordinated commits.

When using dual writes, all copies of the database are included
within the scope of the transaction (Figure 4). The application
must wait for each database update to complete across the
network before proceeding to the next update. It must then wait
for the transaction to be committed across the network before
informing the application that the transaction is complete. This
delay is a function primarily of the communication latency
between the nodes (which is related to the distance separating
the nodes) and of the size of the transaction. Thus, the nodes
typically must be near each other – such as in the same campus
or metropolitan area – and connected by very fast media such as
fiber, which may not allow the degree of separation required for
proper disaster tolerance.

The coordinated-commit method for synchronous replication
minimizes application latency. A coordinated-commit replication
engine is a combination of synchronous-replication and
asynchronous-replication techniques. The coordinated-commit
replication engine registers as a voting member of the source system’s tr
Figure 5, changes are sent to the target database asynchronously so tha
application. It is only at commit time that the coordinated-commit replicati

one rep
with th
ensure
the tran

Thus, t
techniqu
applicat
replicati
channel
coordina
databas
if the n
thousan

latency with this method can be as small as tens of milliseconds.

Figure 5: Coordinated Commits
ansaction. As shown in
t they do not impact the
on engine must wait for
lication latency to check
e target database to
that it can vote “yes” on
saction.

he coordinated-commit
e imposes an

ion latency of one
on latency plus one

latency as it
tes with its target
e at commit time. Even

Figure 4: Dual Writes
5

odes are separated by
ds of miles, application

© 2011 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

6

Unidirectional versus Bidirectional Replication

Unidirectional Replication and Active/Passive Systems

A unidirectional data-replication engine replicates data in one direction ̶ from a source database
to a target database. Figures 3, 4, and 5 are examples of unidirectional asynchronous- and
unidirectional synchronous data replication engines. Unidirectional replication is often used to
maintain a passive backup system in synchronism with an active production system. These
systems are known as active/passive systems.

Unidirectional replication for active/passive systems will always have much longer recovery times
than bidirectional-replication active/active systems, described next.

Bidirectional Replication and Active/Active Systems

A bidirectional data-replication engine replicates data in both directions between two databases.
Each database is acting both as a source database and as a target database. Any change made
to one database is reflected in the other database via data replication. Therefore, every node in
the application network has a current copy of the application database and can participate in the
application. Since each processing node is actively engaged in the application, such systems are
known as active/active systems.

Advantages of Active/Active Systems

Active/active systems provide a wide range of advantages compared to active passive/systems.
Advantages include:

 There are fewer users affected by a failure. In an active/passive architecture, all users
are down. In an active/active system, only the users connected to the failed node are
affected.

 Failover of affected users can be very rapid, supporting RTOs (Recovery Time
Objectives) measured in subseconds to seconds. This is because all that needs to be
done is to reroute transactions or to reconnect users to a surviving node following a node
failure.

 Failover can be periodically and safely tested since all nodes are known to be operational
because they are actively processing transactions. When a failover does occur, it is to a
known working system, providing peace of mind for management.

 Planned downtime can be eliminated by taking down one node at a time, performing
upgrade or maintenance activities on it, and then returning it to service.

 An application can use all available processing capacity. There is no idle standby system.

 Capacity can be added simply by adding nodes to the application network. There is no
need to replace existing systems with larger systems. Alternatively, an existing node can
be replaced with a larger or smaller node to increase or decrease the capacity of the
system. The new node’s database is synchronized with the application database, and
users are then rerouted to it. At this point, the old node can be taken out of service.

 Load easily can be balanced by rerouting some transaction activity to underutilized
nodes.

© 2011

For

 Processing nodes can be located near clusters of users, thereby providing data locality
and a reduction in response time.

 A node can be located in a “lights-out” facility since its failure will not deny users access
to the application’s services.

 If an application cannot run in a distributed environment, it can still be beneficial to run it
in an active/active environment. However, all activity is routed to only one node, which
provides all transaction processing. This configuration is called a “sizzling-hot standby.” It
resolves the application distributed-processing issues but retains all of the continuous-
availability features of an active/active system.

Figure 6 shows an example o
two unidirectional asynchron
opposite directions. However,
complex than a unidirectiona
ensure that a change received
condition known as data oscill

In addition, with asynchrono
changed in each copy of the
should happen, neither datab
other database, and the replic
Now both databases are differ

Data Collisions

There are some applications
temporary database divergenc
that data item is once again up

Some applications avoid data
suffer data collisions.

5 Replicated changes are updates to
are replicated from the change queue
the source system; and the process
Scheme for Controlling Ping-Ponging,
Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

discussion, contact editor@availabilitydigest.com

7

f an asynchronous bidirectional data-replication engine. In effect,
ous replication engines (see Figure 3) are each replicating in
the two replication engines are not independent; and they are more
l replication engine. For one thing, each side must cooperate to
via replication is not replicated back to the source of the change, a

ation or ping-ponging.
5

us replication, it is possible that the same data item might be
application database within the replication-latency interval. If this

ase will know of the conflict. Each will replicate its change to the
ated changes will overwrite the original change in each database.
ent, and both are wrong. This is called a data collision.

in which data collisions can be ignored. For instance, perhaps a
e is not important; and the databases will be resynchronized when
dated.

collisions. For instance, an application that is insert-only will not

the database and are reflected in the target system’s change queue. Since changes
, unless some protection is provided, replicated changes will be replicated back to
will be repeated. See Strickler, G., et al., “Bi-directional Database Replication

” United States Patent 6,122,630; Sept. 19, 2000.

Figure 6: Bidirectional Replication Engine

© 2011 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

8

Some active/active architectures avoid collisions. One frequently used method is to partition the
database between the nodes. For instance, if the database can be partitioned by customer range
so that only one node updates any given partition of customer data, data collisions cannot occur.
In this case, the application must route all updates to the proper node that owns the customer
data partition being updated.

The preferable method is for data collisions to be avoided. However, if data collisions are
possible, they must be detected and resolved. There are several techniques by which the
replication engine can automatically detect and resolve data collisions. They include:

6

 Detection – Detection is generally accomplished by sending with the source change a
row version of some sort that identifies the version of the row that the source system is
changing. The row version can take many forms, such as a timestamp, a version number,
or a before image of the row. If the target system finds that the row version being updated
by the source system is not the same as the current row version in the target database, a
data collision has occurred.

 Resolution – Once the replication engine has detected a data collision, it must make a
decision as to which change to accept and which to reject. The decision rule must
provide consistency so that all nodes will make the same decision. Otherwise, the
database copies may diverge. Many collision resolution rules exist. The selection of a
resolution algorithm depends upon the application and how it processes data.

Examples of collision-resolution rules include:

 Choosing the update that carries the latest (or earliest) timestamp.

 Choosing the update that was made by the node with the highest precedence.

 Using relative replication, in which operations such as add and subtract are
replicated rather than row contents. Since these operations are commutative
(that is, they can be executed in any order and arrive at the same result), data
collisions do not result in database divergence.

 Choosing the update according to specialized business rules bound into the
data-replication engine.

 In those cases where automatic resolution is not possible, collisions will have to
be resolved manually.

Bidirectional synchronous replication avoids data collisions since the replication engine must
acquire locks on all copies of the data item across the network before it can change (or as it
changes) any of them. Therefore, only one application at a time can change a data item, thus
avoiding collisions. A bidirectional synchronous replication engine can be implemented using two
unidirectional, coordinated-commit synchronous replication engines (see Figure 5), one for each
direction, as shown in Figure 7.

6 Chapter 3, Asynchronous Replication, and Chapter 4, Synchronous Replication, Breaking the Availability Barrier:
Survivable Systems for Enterprise Computing, AuthorHouse; 2004.

http://www.availabilitydigest.com/

Summary

A wide variety of d
systems, in which t
Also supported are
application. It can
system. Failover in
reroute transaction

In Part 3, we look
availabilities. We co
© 2011 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

For discussion, contact editor@availabilitydigest.com

9

ata-replication technologies are in use today. They support active/passive
he backup system is passively standing by ready to take over if it is needed.

active/active systems, in which all systems are actively involved in the
take minutes to hours to fail over to a passive backup in an active/passive

active/active systems is immediate since all that needs to be done is to
traffic from the failed system to surviving systems.

more carefully at the various architectures used to achieve a wide range of
mpare these technologies to each other in a Business Continuity Continuum.

Figure 7: Bidirectional Synchronous Replication Engine

