— Uvailability Digest

Migrating Legacy Systems:

Gateways, Interfaces, & the Incremental Approach
March 2007

In their book, Migrating Legacy Systems: Gateways, Interfaces, & the Incremental Approach,
Michael Brodie and Michael Stonebraker explore the quagmire of migrating legacy systems to
modern architectures. They demonstrate through examples and case studies that many legacy
migrations fail or are never completed after considerable time and expense have been
committed. They argue that this is caused by the urge to do a “big-bang” cutover. Instead, they
describe an incremental approach to migration that allows a legacy system to be migrated to a
modern architecture in small, controllable steps. They call their approach “Chicken Little” as
opposed to the big-bang “Cold Turkey” approach.

What does legacy migration have to do with continuous processing architectures? The answer is
another question: “How do | get to there from here?” For instance, how do | migrate my current
legacy system to an active/active system?l

There are still many legacy applications that provide mission-critical services but are burdened
with the inflexibility, high cost, and brittleness that is characteristic of such systems. If we want to
move such a system to, say, an active/active architecture, is it as simple as replicating its
database to a like system? Generally not. The legacy system must, in general, be migrated to an
architecture in which its database is decomposable from its applications. This is not a simple
process and is what this book is all about.**

What is a Legacy System?

Legacy systems are any systems that cannot be modified to adapt to constantly changing
business requirements. They often use aged languages and file systems that tie the user
interfaces, the application logic, and the databases into an unbreakable monolith. They typically
are poorly, if at all, documented and are maintained by an aging staff that knows them intimately.
Their maintenance is expensive, and they are quite brittle in that they tend to break easily
whenever modified.

Consequently, legacy systems are not very adept at adapting to changing business requirements.
Many were built before the concept of layered systems, in which presentation, application, and
database layers are separated by clean interfaces.

! See our companion article in this issue, Migrating Your Application to Active/Active, The Availability Digest; March,
2007.

2 Brodie, M. L., Stonebraker, M., Migrating Legacy Systems: Gateways, Interfaces, & the Incremental Approach, Morgan
Kaufmann Publishers, Inc.; 1995.

% Our thanks to Harry Scott of Carr Scott Software for pointing us to this book.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

Over the decades, legacy systems often
had layered appendages attached in
order to provide new functionality. New
user devices were attached via interface
layers that translated between the legacy
interface requirements and those of the = interfaces
new devices. New applications were
implemented that accessed the legacy systems
data by imitating legacy user devices.
Thus, these legacy systems became a users
hybrid of legacy and modern systems.

systems

systems

interfaces

application
modules

nonseparable interfaces and applications
and the database service

In many cases, it has become imperative
to phase out these legacy systems and —T
replace them with modern architectures data _

that support the rapidly-changing Hybrid Legacy System
business conditions of today. However,

this migration from old to new has proven to be very difficult; and many, if not most, legacy
migrations are never finished.

Chicken Little versus Cold Turkey

The migration of a legacy system could involve hundreds of millions of lines of code, terabytes of
data, and millions of customers. It must be done with no downtime as these systems are often
fulfiling 24x7 mission-critical functions. Michael Brodie and Michael Stonebraker liken these
migrations to trying to overhaul an airplane while it is in flight.

Another serious problem is that the legacy database and the target database to which it is being
migrated must maintain transaction integrity even though the legacy database probably cannot
participate in global transactions.

In their book, the authors describe a formal methodology for migrating from legacy systems to
modern architectures. They couple this with case studies of actual migrations.

Their technique emphasizes incremental migration. They dub this the Chicken Little approach as
opposed to the Cold Turkey approach.

The Cold Turkey approach is the common approach to take. The legacy system is such a black
box to the current development team that it seems that the only alternative is to completely
rewrite the system and cut over to the new system on one fateful day. However, experience has
shown that this approach is very likely to fail after years of development effort and millions of
dollars invested.

The intent of the Chicken Little approach is to compartmentalize the migration effort so that only a
small amount of functionality is migrated at a time. In the event that a migration increment fails,
one can return to the previous system configuration, correct the problem, and try again. In this
way, as the business continues to reengineer itself, the migration effort and the partially
completed target system can be more easily modified to support newly required business
functions as they occur.

Gateways

The basic migration philosophy is to decompose the legacy system as much as possible (if at all),
and then to construct gateways that allow the remaining legacy components to cooperate with
their modern replacements (the target components) as the migration proceeds. At any given point

2

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

in the process, any given user request may need the services of either or both

of the legacy and the target applications and may need to access data from ———
either or both of the legacy and target databases. This cooperation is provided gateway
by gateways, which are at the heart of the Chicken Little technique. ’

It may be decided not to migrate certain legacy functions due to cost,
complexity, risk, or importance. If this is the case, some gateways may remain leghcy tarbet
in the finished target system. function function

Some gateways are commercially available, but gateways are so application-dependent that even
commercially-available gateways need significant modification. In many cases, gateways must be
written in their entirety. The effort of decomposing the legacy system into migratable elements
and the effort required to implement and maintain the gateways can be perceived to be daunting
efforts. However, the authors point out that without this effort, the migration is likely to fail.

Comparison of Chicken Little and Cold Turkey

The authors’ comparison of the Chicken Little and Cold Turkey approaches is given in the
following table:

Cold Turkey Chicken Little
Risk Huge Controllable
Failure Entire project fails Only one step fails
Benefits Immediate, probably short-lived Incremental over time
Outlook Unpredictable until deadline Optimistic

Decomposability

A key consideration in legacy migration is to what extent can the legacy system be decomposed
into the presentation, application, and database layers. The complexity of the migration is
controlled by the structure of the legacy system.

The decomposability of the system defines the migration approach and greatly affects the
complexity of the migration. The more decomposable the system is, the easier will be the
migration.

systems systems

systems

nonseparable interfaces and applications
and the database service

nonseparable interfaces and applications
and the database service

decomposable semidecomposable nondecomposable

A decomposable system is one in which the presentation, application, and data layers can be
easily separated. (The presentation layer is called the “interface” in the author’s diagrams.)

A semidecomposable system is one in which the presentation layer can be separated, but the
application and data layers are closely entwined.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

A nondecomposable system is one in which the system cannot be partitioned in any way.
Gateways

It is the gateway that is the key to the Chicken Little migration process. The function of a gateway
is threefold:

e ltinsulates certain components from changes made to other components.
e |t translates requests and responses between the components which it serves.
e |t guarantees consistency of data in legacy and target database copies.

Gateways are complex. The implementation of a gateway is a major project in itself as it must
understand the nuances of both the legacy interfaces and the target interfaces so that it can
translate accurately between the two. Furthermore, as the migration proceeds, the functions
required of a gateway change so that it must be continually maintained.

Gateway Direction

There are two directions that a gateway might serve. A forward gateway transfers requests from a
legacy component to a target component. A reverse gateway transfers requests from a target

Component toa Iegacy Component.
target reverse
applications gateway

<>

target
data

bases

<>

legacy
data

bases

ST 20000 7
legacy
applications

Gateway Types

Likewise, there are several types of gateways.

e A database gateway transfers requests from an application to a database as shown
above.

e An application gateway transfers requests from a presentation interface to an application.
e An interface gateway transfers requests from users to a presentation interface.

Typically, a single gateway will present a legacy or target interface to the component which it is
servicing, as appropriate. It will route requests to legacy and target components as needed,
based on application logic contained in the gateway. It will format responses to meet the
expectations of the component which it is servicing.

Thus, a source component (whether it be legacy or target) is unaware of what kind of component
(legacy, target, or a combination) is servicing its request. It is insulated from changes in the
servicing components as they migrate from legacy to target and sees only the defined target
interface.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

Migration Gateway Configurations

The use of gateways depends upon the level of decomposability exhibited by the legacy

application.

Decomposable

In a decomposable legacy system, each of the layers can be isolated. Therefore, every layer can
be migrated individually, independently of the other layers. Gateways provide isolation of the
layers and hide the source of servicing, whether it be legacy or target, from the components

requesting service.

The users interface with an interface gateway.
This gateway provides the interface which the
users expect and can route requests to either the
legacy interface or the target interface as required.

The interfaces connect to the applications via
application gateways. An application gateway can
route requests to either a target application or a
legacy application. In some cases, the request
may have to be broken up into subrequests that
are routed to each.

As the migration proceeds, data sets will migrate
from the legacy databases to the target
databases. A particular request may need to
access data items resident in both databases.
Therefore, the legacy and target applications use
database gateways, which will take a request in
legacy or target format as applicable and access
the data wherever it resides.

Semidecomposable

systems systems

legacy
interfaces

target
interfaces

target
applications

nonseparable interfaces and applications
and the database service

legacy
data
bases

semidecomposable system

systems

target
users

legacy
interfaces

target
interfaces

legacy
applications 4

target

[

<>
target

data

decomposable system bases

A semidecomposable legacy system is one
in which the presentation layer can be
cleanly separated from the applications.
However, the applications and databases
are still closely entwined. Therefore, they
cannot be separated and must be treated as
a monolithic whole.

For migration purposes, application
gateways are used to route user requests
from legacy and target interfaces to the
appropriate legacy or target applications as
required to satisfy the request. Responses
returned to the gateways are reformatted to
suit the issuing interface.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

applications

Nondecomposable
The interface, application, and database systems
functions in a nondecomposable legacy system
are so closely entwined that they cannot be
separated. Therefore, the legacy system must
be treated as a monolithic whole throughout
the entire migration. An interface gateway
routes requests from legacy users and target
users to the appropriate legacy or target
system. If a request needs to access [
application functions in both the legacy and :
target systems to order to be satisfied, the :
|
|
|

target
users

target
interfaces

nonseparable interfaces and applications
and the database service

<>
legacy
data
bases

target
applications

gateway is responsible for breaking the request
into subrequests, submitting them to the
appropriate system, and then combining the
responses into an appropriate response for the nondecomposable system
legacy or target user.

Hybrid

Of course, in general, any particular legacy system will comprise a range of nondecomposable,
semidecomposable, and decomposable functions. As the system has been modified over the
years, it is likely that newer functions have been implemented to be more and more
decomposable.

In this situation, the appropriate combination of the above techniques may be used to perform the
migration.

Migration Steps

The Chicken Little migration strategy utilizes an eleven-step process.
Though these steps may be different for different levels of
decomposition, they follow basically the same pattern. In their book,
Brodie and Stonebraker go into great detail concerning what is to be (4) 6
performed in each step as a function of the level of decomposability.

The steps apply to each increment of migration and in general are as
follows:

Incrementally analyze the legacy system.
Incrementally decompose the legacy system structure.
Incrementally design the target interfaces.
Incrementally design the target applications.
Incrementally design the target database.
Incrementally install the target environment.
Incrementally create and install necessary gateways.
Incrementally migrate the legacy database.
Incrementally migrate the legacy applications.

10 Incrementally migrate the legacy interfaces.

11. Incrementally cut over to the target system.

CoNooA~AWNE

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

Case Studies

Brodie and Stonebraker detail as case studies two legacy migrations in which they were heavily
involved. One migration was for a major global telephone company. This legacy system
comprised hundreds of millions of lines of code and terabytes of data. The other migration was for
a large cash management system.

Interestingly, neither of these migrations was completed. The global telephone company
migration project was terminated when it became apparent that further business process
reengineering was needed. The cash management system migration project was terminated after
one year due to a merger in which the new management had a broader information services
mandate. However, the Chicken Little process, which was used in both instances, was deemed to
be a success for the portions of the projects that were completed.

© 2007 Sombers Associates, Inc., and W. H. Highleyman
www.availabilitydigest.com

	Migrating Legacy Systems:
	What is a Legacy System?
	Chicken Little versus Cold Turkey
	Gateways
	Comparison of Chicken Little and Cold Turkey

	Decomposability
	Gateways
	Gateway Direction
	Gateway Types

	Migration Gateway Configurations
	Decomposable
	Semidecomposable
	Nondecomposable
	Hybrid

	Migration Steps
	Case Studies

